The creation of large-scale open domain reading comprehension data sets in recent years has enabled the development of end-to-end neural comprehension models with promising results. To use these models for domains with limited training data, one of the most effective approach is to first pretrain them on large out-of-domain source data and then fine-tune them with the limited target data. The caveat of this is that after fine-tuning the comprehension models tend to perform poorly in the source domain, a phenomenon known as catastrophic forgetting. In this paper, we explore methods that overcome catastrophic forgetting during fine-tuning without assuming access to data from the source domain. We introduce new auxiliary penalty terms and observe the best performance when a combination of auxiliary penalty terms is used to regularise the fine-tuning process for adapting comprehension models. To test our methods, we develop and release 6 narrow domain data sets that could potentially be used as reading comprehension benchmarks.


翻译:近年来,大规模开放域阅读理解数据集的创建使端到端的神经理解模型得以发展,并取得了有希望的成果。为了将这些模型用于培训数据有限的领域,最有效的办法之一是首先对大型外部源数据进行预先培训,然后用有限的目标数据对其进行微调。这方面的告诫是,在对理解模型进行微调之后,在源域内往往表现不佳,这是一种被称为灾难性遗忘的现象。在本文中,我们探讨了一些方法,这些方法可以克服在微调过程中发生的灾难性遗忘,而不必假定获得来源域的数据。我们引入了新的辅助处罚术语,并在使用辅助处罚术语组合来调整调整调整理解模型的微调过程时,观察最佳表现。为了测试我们的方法,我们开发和发行了6套狭窄的域数据集,这些数据集可以用作阅读理解基准。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书-IBM推荐】机器学习傻瓜式入门,75页pdf
专知会员服务
49+阅读 · 2020年9月29日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
3+阅读 · 2018年11月29日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书-IBM推荐】机器学习傻瓜式入门,75页pdf
专知会员服务
49+阅读 · 2020年9月29日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员