This paper explores the identification of smartphone users when certain samples collected while the subject felt happy, upset or stressed were absent or present. We employ data from 19 subjects using the StudentLife dataset, a dataset collected by researchers at Dartmouth College that was originally collected to correlate behaviors characterized by smartphone usage patterns with changes in stress and academic performance. Although many previous works on behavioral biometrics have implied that mood is a source of intra-person variation which may impact biometric performance, our results contradict this assumption. Our findings show that performance worsens when removing samples that were generated when subjects may be happy, upset, or stressed. Thus, there is no indication that mood negatively impacts performance. However, we do find that changes existing in smartphone usage patterns may correlate with mood, including changes in locking, audio, location, calling, homescreen, and e-mail habits. Thus, we show that while mood is a source of intra-person variation, it may be an inaccurate assumption that biometric systems (particularly, mobile biometrics) are likely influenced by mood.
翻译:本文探讨了当某些样本采集时,当该对象感到快乐、不高兴或压力或压力缺失或出现时,对智能用户的识别。我们使用来自19个学科的数据,使用学生生命数据集,该数据集是达特茅斯学院研究人员收集的,最初收集该数据集是为了将智能手机使用模式与压力和学术表现变化相联系的行为与智能手机使用模式联系起来。虽然许多先前关于行为生物测定的研究表明,情绪是人与人之间差异的一个来源,可能会影响生物测定的性能,但我们的结果与这一假设相矛盾。我们的研究结果表明,在移除当对象可能快乐、不高兴或压力时生成的样本时,性能会恶化。因此,没有迹象表明情绪对性能有负面影响。然而,我们确实发现,智能手机使用模式中存在的变化可能与情绪相关,包括锁定、音频、位置、调用、家庭屏幕和电子邮件习惯的变化。因此,我们表明,虽然情绪是人与人之间差异的一个来源,但可能是一种不准确的假设,即生物测定系统(特别是移动生物测定系统)可能受情绪影响。