Dynamic games are an effective paradigm for dealing with the control of multiple interacting actors. This paper introduces ALGAMES (Augmented Lagrangian GAME-theoretic Solver), a solver that handles trajectory-optimization problems with multiple actors and general nonlinear state and input constraints. Its novelty resides in satisfying the first-order optimality conditions with a quasi-Newton root-finding algorithm and rigorously enforcing constraints using an augmented Lagrangian method. We evaluate our solver in the context of autonomous driving on scenarios with a strong level of interactions between the vehicles. We assess the robustness of the solver using Monte Carlo simulations. It is able to reliably solve complex problems like ramp merging with three vehicles three times faster than a state-of-the-art DDP-based approach. A model-predictive control (MPC) implementation of the algorithm, running at more than 60 Hz, demonstrates ALGAMES' ability to mitigate the "frozen robot" problem on complex autonomous driving scenarios like merging onto a crowded highway.
翻译:动态游戏是处理多个互动行为体控制的有效范例。 本文介绍了 ALGAMES (Augmented Lagrangian GAME- 理论解答器), 该解答器处理多个行为体的轨迹优化问题, 以及一般的非线性状态和输入限制。 它的新颖之处在于以准Newton根基调查算法满足一阶最佳条件, 并用增强的Lagrangian 方法严格强制实施限制。 我们评估了在机动车辆之间高度互动的情景中自主驱动的解答器。 我们用蒙特卡洛模拟来评估解答器的稳健性。 它能够可靠地解决复杂的问题, 比如与三辆汽车的斜坡合并速度比以最先进的DDP为基础的方法快三倍。 模型预测性控制(MPC) 算法的实施速度超过60赫兹, 表明 ALGAMES 有能力在像合并到拥挤高速公路这样的复杂自主驱动情景中减轻“ 冻机器人” 问题 。