Engagement in Human-Machine Interaction is the process by which entities participating in the interaction establish, maintain, and end their perceived connection. It is essential to monitor the engagement state of patients in various AI-based healthcare paradigms. This includes medical conditions that alter social behavior such as Autism Spectrum Disorder (ASD) or Attention-Deficit/Hyperactivity Disorder (ADHD). Engagement is a multifaceted construct which is composed of behavioral, emotional, and mental components. Previous research has neglected the multi-faceted nature of engagement. In this paper, a system is presented to distinguish these facets using contextual and relational features. This can facilitate further fine-grained analysis. Several machine learning classifiers including traditional and deep learning models are compared for this task. A highest accuracy of 74.57% with an F-Score and mean absolute error of 0.74 and 0.23 respectively was obtained on a balanced dataset of 22242 instances with neural network-based classification.


翻译:参与人类-海洋互动是参与互动的实体建立、保持和结束其感知联系的过程,监测患者参与各种基于AI的保健模式的情况至关重要,其中包括改变社会行为的医学条件,如自闭症谱谱症(ASD)或注意力-缺陷/健康障碍(ADHD)等。参与是由行为、情感和精神组成部分组成的多方面结构。先前的研究忽视了参与的多面性。本文介绍了利用背景和关系特征来区分这些方面的方法。这可以促进进一步的细微分析。对包括传统和深层学习模式在内的若干机器学习分类师进行了这项工作的比较。在22242例基于神经网络分类的均衡数据集中,获得了最高精度74.57%的精度,其中F-分数为0.74和0.23的绝对误差分别为0.74和0.23。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
专知会员服务
54+阅读 · 2020年10月11日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2012-2018-CS顶会历届最佳论文大列表
深度学习与NLP
6+阅读 · 2019年2月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2022年1月26日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
6+阅读 · 2019年4月4日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
专知会员服务
54+阅读 · 2020年10月11日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2012-2018-CS顶会历届最佳论文大列表
深度学习与NLP
6+阅读 · 2019年2月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员