Harmonic centrality calculates the importance of a node in a network by adding the inverse of the geodesic distances of this node to all the other nodes. Harmonic centralization, on the other hand, is the graph-level centrality score based on the node-level harmonic centrality. In this paper, we present some results on both the harmonic centrality and harmonic centralization of graphs resulting from some graph products such as Cartesian and direct products of the path $P_2$ with any of the path $P_m$, cycle $C_m$, and fan $F_m$ graphs.
翻译:调心中心点计算网络中节点的重要性, 方法是将此节点的大地学距离的逆差加到所有其他节点中。 调和集中则是基于节点的调和中心点的图形级中点评分。 在本文中, 我们展示了一些图表的调和中心点和调和集中结果, 这些图表来自一些图形产品, 如笛卡尔和路径的直接产品$P_ 2美元, 任何路径为$P_ m$, 循环为$C_m$, 以及扇形为$F_m$的图表。