Collective Adaptive Systems often consist of many heterogeneous components typically organised in groups. These entities interact with each other by adapting their behaviour to pursue individual or collective goals. In these systems, the distribution of these entities determines a space that can be either physical or logical. The former is defined in terms of a physical relation among components. The latter depends on logical relations, such as being part of the same group. In this context, specification and verification of spatial properties play a fundamental role to support the design of a system and predict its behaviour. For this reasons, different tools and techniques have been proposed to specify and verify the properties of space. However, these approaches are mainly based on graphs. These are used to model spatial relations, describing a form of proximity among pairs of entities. Unfortunately, these graph-based models do not permit considering relations among more than two entities that may arise when one is interested in describing \emph{multi-dimensional} aspects of space. In this work, we propose a spatial logic interpreted on \emph{simplicial complexes}. These are topological objects able to represent surfaces and volumes efficiently that generalise graphs with higher-order edges. We discuss how the satisfaction of logical formulas can be verified by a correct and complete model checking algorithm, which is linear to the dimension of the simplicial complex and logical formula. The expressiveness of the proposed logic is studied in terms of the spatial variants of classical \emph{bisimulation} and \emph{branching bisimulation} relations defined over simplicial complexes.
翻译:集体适应系统通常由通常按组排列的许多不同组成部分组成。 这些实体通过调整行为来相互互动, 以追求个人或集体目标。 在这些系统中, 这些实体的分布决定了一种空间空间, 可以是物理的, 也可以是逻辑的。 前者的定义是各组成部分之间的物理关系。 后者取决于逻辑关系, 如属于同一组的一部分。 在这方面, 空间属性的规格和校验对于支持系统的设计并预测其行为具有根本作用。 出于这个原因, 提出了不同的工具和技术来指定和验证空间的特性。 但是, 这些方法主要基于图表。 这些方法被用于模拟空间关系, 描述相对实体之间的接近形式。 不幸的是, 这些基于图形的模式不允许考虑两个以上实体之间的关系, 比如作为同一组的一部分。 在这方面, 空间属性的规格和验证对于支持系统设计并预测其行为具有根本作用。 我们建议用一种空间逻辑逻辑解释来解释这些空间特性。 这些是能够以直观的表面和数量有效地代表直观图表的表面和数量, 并且描述两个实体之间的距离。 不幸的是, 我们通过逻辑学的公式来界定精确的精确度的精确度。 。 。 我们可以通过逻辑学的精确的公式来定义的精确的精确的精确度 。