We establish a list of characterizations of bounded twin-width for hereditary, totally ordered binary structures. This has several consequences. First, it allows us to show that a (hereditary) class of matrices over a finite alphabet either contains at least $n!$ matrices of size $n \times n$, or at most $c^n$ for some constant $c$. This generalizes the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem from permutation classes to any matrix class over a finite alphabet, answers our small conjecture [SODA '21] in the case of ordered graphs, and with more work, settles a question first asked by Balogh, Bollob\'as, and Morris [Eur. J. Comb. '06] on the growth of hereditary classes of ordered graphs. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width.
翻译:我们为世袭、完全有序的二进制结构建立一份双曲线捆绑式双曲线特征清单。 这有几个后果 。 首先, 它让我们能够显示一个( 遗传的) 基质类别在固定字母表上至少包含 $n\ timen n$, 或最多为 $c$ 的基质, 或最多为 $c$ 。 这概括了著名的 Stanley- Wilf 参数/ Marcus- Tardos 理论从固定字母类到任何矩阵类的固定字母, 在定购的图表中解答我们的小猜想 [SODA'21], 并且做更多的工作, 解决了Balogh、 Bollob\as 和 Morris [Eur. J. Comb.'06] 首次询问的关于定购定图表遗传类增长的问题。 第二, 它给定的图表上的双维图上的固定参数缩缩略算法。 第三, 它生成了固定参数直径第一阶模型模型模型模型模型的完全分类, 检查了订购的两进式二进制结构结构结构的分类。 第四, 它提供了一个模的模级。