Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images. In this paper, we present a generic Dual-stream Network (DS-Net) to fully explore the representation capacity of local and global pattern features for image classification. Our DS-Net can simultaneously calculate fine-grained and integrated features and efficiently fuse them. Specifically, we propose an Intra-scale Propagation module to process two different resolutions in each block and an Inter-Scale Alignment module to perform information interaction across features at dual scales. Besides, we also design a Dual-stream FPN (DS-FPN) to further enhance contextual information for downstream dense predictions. Without bells and whistles, the proposed DS-Net outperforms DeiT-Small by 2.4% in terms of top-1 accuracy on ImageNet-1k and achieves state-of-the-art performance over other Vision Transformers and ResNets. For object detection and instance segmentation, DS-Net-Small respectively outperforms ResNet-50 by 6.4% and 5.5% in terms of mAP on MSCOCO 2017, and surpasses the previous state-of-the-art scheme, which significantly demonstrates its potential to be a general backbone in vision tasks. The code will be released soon.
翻译:具有显著全球代表性能力的变异器在视觉任务方面实现竞争性结果,但未能考虑投入图像中的高水平本地模式信息。在本文中,我们提出了一个通用的双流网络(DS-Net),以充分探索图像分类的本地和全球模式特征的代表性能力。我们的DS-Net可以同时计算细微和集成的特性,并有效地结合这些特性。具体地说,我们提议了一个内部推进模块,以处理每个区块的2个不同分辨率,以及一个跨系统协调模块,以便在两个尺度上进行信息互动。此外,我们还设计了一个双流 FPN(DS-FPN)双流网络,以进一步加强下游密集预测的背景资料。如果没有钟声和哨音,拟议的DS-Net将DeiT-Small比DiT-Small高出2.4%,在图像Net-1k的顶级和集级精度上,实现与其他愿景变异的状态表现。关于目标探测和实例分解,DS-Net-Smarall分别将Res-50比ResNet(DS-FSP-50)比对下层预测环境预测,将很快显示MASAP总蓝图的版本。