Generating dense point clouds from sparse raw data benefits downstream 3D understanding tasks, but existing models are limited to a fixed upsampling ratio or to a short range of integer values. In this paper, we present APU-SMOG, a Transformer-based model for Arbitrary Point cloud Upsampling (APU). The sparse input is firstly mapped to a Spherical Mixture of Gaussians (SMOG) distribution, from which an arbitrary number of points can be sampled. Then, these samples are fed as queries to the Transformer decoder, which maps them back to the target surface. Extensive qualitative and quantitative evaluations show that APU-SMOG outperforms state-of-the-art fixed-ratio methods, while effectively enabling upsampling with any scaling factor, including non-integer values, with a single trained model. The code is available at https://github.com/apusmog/apusmog/
翻译:从稀少的原始数据生成密度点云有助于下游的3D理解任务,但现有模型仅限于固定的抽样比重或短范围的整数值。在本文中,我们展示了APU-SOMG,即任意点云采样的变换型模型(APU-SOMG),稀薄输入首先被映射为高山分布的球状混合体(SOMG),从中可以抽取任意数量的点。然后,这些样本作为查询输入到变换器解码器中,该变换器将它们映射回目标表面。广泛的定性和定量评估显示,APU-SOMG超越了最先进的固定鼠标方法,同时以单一的经过培训的模型,有效地使包括非内置值在内的任何增标要素得以升级。该代码可在https://github.com/apusmog/apusmog/apusmog/上查阅。