Attention mechanisms, such as local and non-local attention, play a fundamental role in recent deep learning based speech enhancement (SE) systems. However, natural speech contains many fast-changing and relatively brief acoustic events, therefore, capturing the most informative speech features by indiscriminately using local and non-local attention is challenged. We observe that the noise type and speech feature vary within a sequence of speech and the local and non-local operations can respectively extract different features from corrupted speech. To leverage this, we propose Selector-Enhancer, a dual-attention based convolution neural network (CNN) with a feature-filter that can dynamically select regions from low-resolution speech features and feed them to local or non-local attention operations. In particular, the proposed feature-filter is trained by using reinforcement learning (RL) with a developed difficulty-regulated reward that is related to network performance, model complexity, and "the difficulty of the SE task". The results show that our method achieves comparable or superior performance to existing approaches. In particular, Selector-Enhancer is potentially effective for real-world denoising, where the number and types of noise are varies on a single noisy mixture.
翻译:注意机制,例如地方和非地方的关注,在最近深层学习的语音增强系统中发挥了根本性作用。然而,自然演讲包含许多快速变化和相对简短的声学活动,因此,通过不加区分地利用当地和非当地的关注来捕捉最丰富的语音特征。我们发现,噪音类型和语音特征在一系列演讲中各不相同,而地方和非地方的行动可以分别从腐败言论中提取不同的特征。为了发挥这一作用,我们提议了基于“选择-Enhancer”,这是一个基于双重注意的神经神经网络,其功能过滤器能够动态地从低分辨率的语音特征中选择区域,并将这些特征提供给当地或非当地的关注行动。特别是,拟议的功能过滤器通过使用强化学习(RL)进行培训,开发出与网络性能、模型复杂性和“SE任务的难度”有关的困难调节奖励。结果显示,我们的方法与现有方法具有相似或优异的性能。特别是,“选择-Enhancer”有可能对现实世界的脱色效果,因为那里的噪音的数量和类型在单一的混合物上各不相同。