AC Optimal Power Flow (AC-OPF) is a fundamental building block in power system optimization. It is often solved repeatedly, especially in regions with large penetration of renewable generation, to avoid violating operational limits. Recent work has shown that deep learning can be effective in providing highly accurate approximations of AC-OPF. However, deep learning approaches may suffer from scalability issues, especially when applied to large realistic grids. This paper addresses these scalability limitations and proposes a load embedding scheme using a 3-step approach. The first step formulates the load embedding problem as a bilevel optimization model that can be solved using a penalty method. The second step learns the encoding optimization to quickly produce load embeddings for new OPF instances. The third step is a deep learning model that uses load embeddings to produce accurate AC-OPF approximations. The approach is evaluated experimentally on large-scale test cases from the NESTA library. The results demonstrate that the proposed approach produces an order of magnitude improvements in training convergence and prediction accuracy.
翻译:AC 最佳电力流(AC-OPF)是优化电力系统的基本构件,通常会反复解决,特别是在可再生能源大量渗透的地区,以避免违反操作限制。最近的工作表明,深层学习能够有效地提供非常准确的AC-OPF近似值。然而,深层学习方法可能会受到可缩放问题的影响,特别是在应用到大型现实电网时。本文件讨论了这些可缩放性限制,并提出了一个采用三步方法的负载嵌入计划。第一步将负载嵌入问题设计成双层优化模型,可以使用惩罚方法加以解决。第二步学习编码优化,以快速生成新的 OPFF 案例的负载嵌入。第三步是使用负载嵌入模型来产生准确的AC-OPF近似值的深层学习模型。该方法是用NESTA图书馆大规模测试案例的实验性评估。结果显示,拟议的方法在培训趋同和预测准确性方面产生了数量级的改进。