In the human hand, high-density contact information provided by afferent neurons is essential for many human grasping and manipulation capabilities. In contrast, robotic tactile sensors, including the state-of-the-art SynTouch BioTac, are typically used to provide low-density contact information, such as contact location, center of pressure, and net force. Although useful, these data do not convey or leverage the rich information content that some tactile sensors naturally measure. This research extends robotic tactile sensing beyond reduced-order models through 1) the automated creation of a precise experimental tactile dataset for the BioTac over a diverse range of physical interactions, 2) a 3D finite element (FE) model of the BioTac, which complements the experimental dataset with high-density, distributed contact data, 3) neural-network-based mappings from raw BioTac signals to not only low-dimensional experimental data, but also high-density FE deformation fields, and 4) mappings from the FE deformation fields to the raw signals themselves. The high-density data streams can provide a far greater quantity of interpretable information for grasping and manipulation algorithms than previously accessible.
翻译:在人类手中,由远距神经元提供的高密度接触信息对许多人类掌握和操纵能力至关重要。相比之下,机器人触动传感器,包括最先进的SynTouch BioTac,通常用于提供低密度接触信息,如接触地点、压力中心和净力。这些数据虽然有用,但并不能传递或利用某些触动感应器自然测量的丰富信息内容。这种研究将机器人触动感测超越了减少操作模型,其方法是:1)在各种物理互动中自动为BioTac自动创建精确的实验触动数据集;2)3D-有限元素BioTac模型,该模型以高密度、分布接触数据、3)原始BioTac信号的神经-网络绘图不仅传达或利用低度实验数据,而且利用高密度FE变异构图,以及4)从FE变形场到原始信号本身的绘图。高密度数据流的可获取性数据流可提供比先前可获取的更高数量的解释。