Chang's lemma (Duke Mathematical Journal, 2002) is a classical result with applications across several areas in mathematics and computer science. For a Boolean function $f$ that takes values in {-1,1} let $r(f)$ denote its Fourier rank. For each positive threshold $t$, Chang's lemma provides a lower bound on $wt(f):=\Pr[f(x)=-1]$ in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least $1/t$. We examine the tightness of Chang's lemma w.r.t. the following three natural settings of the threshold: - the Fourier sparsity of $f$, denoted $k(f)$, - the Fourier max-supp-entropy of $f$, denoted $k'(f)$, defined to be $\max \{1/|\hat{f}(S)| : \hat{f}(S) \neq 0\}$, - the Fourier max-rank-entropy of $f$, denoted $k''(f)$, defined to be the minimum $t$ such that characters whose Fourier coefficients are at least $1/t$ in absolute value span a space of dimension $r(f)$. We prove new lower bounds on $wt(f)$ in terms of these measures. One of our lower bounds subsumes and refines the previously best known upper bound on $r(f)$ in terms of $k(f)$ by Sanyal (ToC, 2019). Another lower bound is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of the absolute values of the level-$1$ Fourier coefficients. We also show that Chang's lemma for the these choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions (which are modifications of the Addressing function) witnessing their tightness. Finally we construct Boolean functions $f$ for which - our lower bounds asymptotically match $wt(f)$, and - for any choice of the threshold $t$, the lower bound obtained from Chang's lemma is asymptotically smaller than $wt(f)$.


翻译:Chang's lemmma (Duke Mathematical Journal, 2002) 是数学和计算机科学中若干领域应用的经典参数。 对于布尔函数, 其值在 {-1, 1} 让美元(f) 表示它的 Fleier 排名。 对于每个正下限 $t 美元, 张的lemmma 提供较低的约束值在 $wt (f) :\\\ f[x) =-1美元 上方字符的大小。 Freyer 系数至少为 1美元(x) 。 我们的Freyer 系数在数学和计算机科学上方值的大小(S) 更低的参数。 我们的利玛值在 limmma w. t. t. tret.

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员