Deploying deep neural networks~(DNNs) on edge devices provides efficient and effective solutions for the real-world tasks. Edge devices have been used for collecting a large volume of data efficiently in different domains. DNNs have been an effective tool for data processing and analysis. However, designing DNNs on edge devices is challenging due to the limited computational resources and memory. To tackle this challenge, we demonstrate Object Detection System for Edge Devices~(BED) on the MAX78000 DNN accelerator. It integrates on-device DNN inference with a camera and an LCD display for image acquisition and detection exhibition, respectively. BED is a concise, effective and detailed solution, including model training, quantization, synthesis and deployment. Experiment results indicate that BED can produce accurate detection with a 300-KB tiny DNN model, which takes only 91.9 ms of inference time and 1.845 mJ of energy.


翻译:在边缘装置上部署深神经网络~(DNN)为现实世界任务提供了高效和有效的解决方案。 边缘装置被用于在不同领域有效收集大量数据。 DNN是数据处理和分析的有效工具。 但是,由于计算资源和记忆有限,在边缘装置上设计DNN具有挑战性。 为了应对这一挑战,我们在 MAX78000 DNN加速器上演示了边缘装置的物体探测系统。 它将DNN假设与摄像头和LCD显示相融合,分别用于图像获取和探测展览。 BED是一个简洁、有效和详细的解决方案,包括模型培训、量化、合成和部署。 实验结果表明,BED能够以300-KB小DNN模型产生准确的检测,这只需要91.9米的计算时间和1.845米的能量。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
13+阅读 · 2019年4月9日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员