Short-term forecasting of solar photovoltaic energy (PV) production is important for powerplant management. Ideally these forecasts are equipped with error bars, so that downstream decisions can account for uncertainty. To produce predictions with error bars in this setting, we consider Gaussian processes (GPs) for modelling and predicting solar photovoltaic energy production in the UK. A standard application of GP regression on the PV timeseries data is infeasible due to the large data size and non-Gaussianity of PV readings. However, this is made possible by leveraging recent advances in scalable GP inference, in particular, by using the state-space form of GPs, combined with modern variational inference techniques. The resulting model is not only scalable to large datasets but can also handle continuous data streams via Kalman filtering.
翻译:在发电厂管理中,太阳能光伏能源(PV)生产的短期预测非常重要。理想情况下,这些预测应该具有误差范围,以便下游决策考虑不确定性。为了在这个场景中产生具有误差范围的预测,我们考虑在英国建模和预测太阳能光伏能源生产的高斯过程(GP)。由于PV读数的大数据量和非高斯性,对PV时间序列数据的GP回归的标准应用是不可行的。然而,通过利用可扩展GP推断的最新进展,特别是使用GP的状态空间形式和现代变分推断技术的组合,可以实现这一点。得到的模型不仅可以扩展到大数据集,而且可以通过卡尔曼滤波处理连续数据流。