We propose a novel mesh refinement scheme based on signal processing for boundary integral simulations of inviscid droplet dynamics with axial symmetry. A key idea is to directly access the Fourier coefficients of a principal curvature as a function of the arclength through a natural change of variables. The trapezoidal rule is applied to those Fourier-type integrals and the resulting formula fits in the framework of the non-uniform fast Fourier transform. This observation enables to efficiently use an envelope analysis and smoothing filter to generate guidelines for mesh refinement in two singularity formation scenarios. Applications also include a non-iterative construction of the uniform parametrization for an important class of plane curves, which is used in a convergence study of the time-stepping procedure implemented in the previous work by Nitsche and Steen [J. Comput. Phys. 200 (2004) 299].
翻译:我们提出了一个新颖的网状改进计划,其基础是,对有轴对称的隐形小滴动态的边界整体模拟进行信号处理;一个关键的想法是,通过变量的自然变化,直接从弧长函数中获取主曲线的Fourier系数;对Fourier型的构件适用捕捉式规则,由此产生的公式适合非统一型快速Fourier变形的框架;这一观察能够有效地利用信封分析和平滑过滤法,为两种单体形成情景的网状改进制定准则;应用还包括对重要类型的平面曲线的统一准对称进行非典型的构建,用于对Nitsche和Steen[J.Comput. Phys. 200(2004) 299]先前工作中实施的时间步程序进行趋同研究。