The ever-increase in the quality and quantity of data generated from day-to-day businesses operations in conjunction with the continuously imported related social data have made the traditional statistical approaches inadequate to tackle such data floods. This has dictated researchers to design and develop advance and sophisticated analytics that can be incorporated to gain valuable insights that benefit the business domain. This chapter sheds the light on core aspects that lay the foundations for social big data analytics. In particular, the significance of predictive analytics in the context of SBD is discussed fortified with presenting a framework for SBD predictive analytics. Then, various predictive analytical algorithms are introduced with their usage in several important application and top-tier tools and APIs. A case study on using predictive analytics to social data is provided supported with experiments to substantiate the significance and utility of predictive analytics.


翻译:日常商业活动产生的数据质量和数量的不断增加,加上不断输入的相关社会数据,使得传统的统计方法不足以应对这类数据洪涝,这就要求研究人员设计和开发先进的尖端分析方法,以获得有益于商业领域的有价值的洞察力,本章阐明了为社会大数据分析奠定基础的核心方面,尤其讨论了SBD背景下预测分析的重要性,并加固了SBD预测分析框架。随后,在一些重要应用和顶级工具和API中使用了各种预测分析算法。关于对社会数据使用预测分析的案例研究得到了实验的支持,以证实预测分析的重要性和效用。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月10日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员