Parallel server system is a stochastic processing network widely studied in the context of manufacturing, supply chain, ride-hailing, call centers, etc. Heterogeneous customers arrive into the system and only a subset of servers can serve any given customer type depending on the flexibility graph. As the flexibility can be overlapping, scheduling decisions must be made to minimize the delay experienced by the customers. Exact analysis of delay is not possible and so, we consider the heavy traffic asymptotic regime, wherein the arrival rate is loaded up to approach the service rate. We consider the general case when the so called complete resource pooling (CRP) is not satisfied. Recent work established that when the MaxWeight scheduling algorithm is used, the state space collapses (SSC) into a lower dimensional sub-space. Building upon this result, the goal of our paper is to design, analyze and improve the flexibility graph such that the dimension of SSC is minimized. First, we characterize the SSC and thus, the mean delay performance in terms of a given flexibility graph. Using this result, we next study the problem of designing the sparsest flexibility graph that leads to a target SSC dimension. We establish a necessary and sufficient condition on the number of edges required, and provide an algorithm to construct such a graph. Finally, we consider the question of how to improve a given flexibility graph if one is allowed to add a single additional edge. The above results are obtained by identifying a connection to the transportation polytope, and adding to a long line of literature, we develop new theoretical results for it. These results are therefore of independent interest. In particular, we obtain new results on the extreme points and the so-called support graphs of the transportation polytope.
翻译:平行服务器系统是一个在制造、供应链、骑车、呼叫中心等背景下广泛研究的随机处理网络。 杂质客户进入系统, 只有一组服务器才能根据灵活度图为任何特定客户类型服务。 由于灵活性可以重叠, 必须做出时间安排决定, 以最大限度地减少客户的延误。 对延误的精确分析是不可能的, 因此, 我们认为, 对交通量的缓慢性能系统进行了大量分析, 到达率被加满了以接近服务率。 因此, 当所谓的完整资源集合(CRP)不满意时, 我们考虑这个一般性案例。 最近的工作已经确定, 当使用 MaxWeight 列表算法时, 状态空间崩溃(SSC) 只能满足任何特定客户类型, 取决于这个结果, 我们的文件的目标是设计、 分析并改进灵活性图, 从而将SSC 的层面缩小到最小值。 首先, 我们描述SSC, 因此, 以某种灵活性的延迟性效果, 也就是以一个允许的数值来获取新的支持。 因此, 我们下一个研究问题是如何设计最稀薄的灵活性图表, 导致一个目标的逻辑上的结果, 将数据转换成一个新的SSC 。 我们确定一个必要的条件到一个新的图表, 向一个新的图表的 。 最后, 如何构建一个必要的, 向一个新的的 将一个特定的 向一个特定的 向一个特定的 向一个图表的路径, 向一个特定的 向一个方向的路径, 我们建立到一个特定的路径, 向一个特定的路径, 我们建立到一个特定的路径, 。