Precipitation forecasts are less accurate compared to other meteorological fields because several key processes affecting precipitation distribution and intensity occur below the resolved scale of global weather prediction models. This requires to use higher resolution simulations. To generate an uncertainty prediction associated with the forecast, ensembles of simulations are run simultaneously. However, the computational cost is a limiting factor here. Thus, instead of generating an ensemble system from simulations there is a trend of using neural networks. Unfortunately the data for high resolution ensemble runs is not available. We propose a new approach to generating ensemble weather predictions for high-resolution precipitation without requiring high-resolution training data. The method uses generative adversarial networks to learn the complex patterns of precipitation and produce diverse and realistic precipitation fields, allowing to generate realistic precipitation ensemble members using only the available control forecast. We demonstrate the feasibility of generating realistic precipitation ensemble members on unseen higher resolutions. We use evaluation metrics such as RMSE, CRPS, rank histogram and ROC curves to demonstrate that our generated ensemble is almost identical to the ECMWF IFS ensemble.
翻译:由于影响降水分布和强度的关键过程发生在全球天气预报模型所解析的尺度以下,降水预报比其他气象领域的预报更不准确。这就需要使用更高分辨率的模拟。为了生成与预报相关的不确定性预测,需要同时运行一系列模拟。然而,计算成本是一个限制因素。因此,有一种使用神经网络而不是通过模拟产生集合系统的趋势。不幸的是,高分辨率集合运行的数据并不可用。我们提出了一种新方法来生成高分辨率降水的集合天气预报,而不需要高分辨率的训练数据。该方法利用生成对抗网络来学习降水的复杂模式,并产生多样化和真实的降水场,从而可以仅使用可用的控制性预测生成真实的降水集合成员。我们展示了在未知更高分辨率下生成真实的降水集合成员的可行性。我们使用RMSE、CRPS、排名直方图和ROC曲线等评估指标,证明我们生成的集合与ECMWF IFS集合几乎完全相同。