Period finding and phase estimation are fundamental in quantum computing. Prior work has established lower bounds on their success probabilities. Such quantum algorithms measure a state $|\hat\ell\rangle$ in an $n$-qubit computational basis, $\hat\ell \in [0, 2^n - 1]$, and then post-process this measurement to produce the final output, in the case of period finding, a divisor of the period $r$. We consider a general post-processing algorithm which succeeds whenever the measured $\hat\ell$ is within some tolerance $M$ of a positive integer multiple of $2^n / r$. We give new (tight) lower and upper bounds on the success probability that converge to 1. The parameter $n$ captures the complexity of the quantum circuit. The parameter $M$ can be tuned by varying the post-processing algorithm (e.g., additional brute-force search, lattice methods). Our tight analysis allows for the careful exploitation of the tradeoffs between the complexity of the quantum circuit and the effort spent in classical processing when optimizing the probability of success. We note that the most recent prior work in most recent work does not give tight bounds for general $M$.
翻译:周期寻找与相位估计是量子计算中的基础问题。已有研究为其成功概率建立了下界。此类量子算法在$n$量子比特计算基下测量态$|\hat\ell\rangle$(其中$\hat\ell \in [0, 2^n - 1]$),而后通过后处理该测量值产生最终输出——对于周期寻找问题,输出结果为周期$r$的某个因子。本文研究一种通用后处理算法:当测量值$\hat\ell$落在$2^n / r$的整数倍附近容差范围$M$内时,算法即判定成功。我们给出了收敛于1的成功概率的(紧致)新下界与上界。参数$n$表征量子线路的复杂度,参数$M$可通过调整后处理算法(例如增加暴力搜索、格基方法等)进行调节。我们的紧致分析使得在优化成功概率时,能够精细权衡量子线路复杂度与经典处理开销。需要指出的是,现有最新研究尚未对一般性$M$给出紧致界。