Period finding and phase estimation are fundamental in quantum computing. Prior work has established lower bounds on their success probabilities. Such quantum algorithms measure a state $|\hat\ell\rangle$ in an $n$-qubit computational basis, $\hat\ell \in [0, 2^n - 1]$, and then post-process this measurement to produce the final output, in the case of period finding, a divisor of the period $r$. We consider a general post-processing algorithm which succeeds whenever the measured $\hat\ell$ is within some tolerance $M$ of a positive integer multiple of $2^n / r$. We give new (tight) lower and upper bounds on the success probability that converge to 1. The parameter $n$ captures the complexity of the quantum circuit. The parameter $M$ can be tuned by varying the post-processing algorithm (e.g., additional brute-force search, lattice methods). Our tight analysis allows for the careful exploitation of the tradeoffs between the complexity of the quantum circuit and the effort spent in classical processing when optimizing the probability of success. We note that the most recent prior work in most recent work does not give tight bounds for general $M$.


翻译:周期寻找与相位估计是量子计算中的基础问题。已有研究为其成功概率建立了下界。此类量子算法在$n$量子比特计算基下测量态$|\hat\ell\rangle$(其中$\hat\ell \in [0, 2^n - 1]$),而后通过后处理该测量值产生最终输出——对于周期寻找问题,输出结果为周期$r$的某个因子。本文研究一种通用后处理算法:当测量值$\hat\ell$落在$2^n / r$的整数倍附近容差范围$M$内时,算法即判定成功。我们给出了收敛于1的成功概率的(紧致)新下界与上界。参数$n$表征量子线路的复杂度,参数$M$可通过调整后处理算法(例如增加暴力搜索、格基方法等)进行调节。我们的紧致分析使得在优化成功概率时,能够精细权衡量子线路复杂度与经典处理开销。需要指出的是,现有最新研究尚未对一般性$M$给出紧致界。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员