The Rowhammer vulnerability continues to get worse, with the Rowhammer Threshold (TRH) reducing from 139K activations to 4.8K activations over the last decade. Typical Rowhammer mitigations rely on tracking aggressor rows. The number of possible aggressors increases with lowering thresholds, making it difficult to reliably track such rows in a storage-efficient manner. At lower thresholds, academic trackers such as Graphene require prohibitive SRAM overheads (hundreds of KBs to MB). Recent in-DRAM trackers from industry, such as DSAC-TRR, perform approximate tracking, sacrificing guaranteed protection for reduced storage overheads, leaving DRAM vulnerable to Rowhammer attacks. Ideally, we seek a scalable tracker that tracks securely and precisely, and incurs negligible dedicated SRAM and performance overheads, while still being able to track arbitrarily low thresholds. To that end, we propose START - a Scalable Tracker for Any Rowhammer Threshold. Rather than relying on dedicated SRAM structures, START dynamically repurposes a small fraction the Last-Level Cache (LLC) to store tracking metadata. START is based on the observation that while the memory contains millions of rows, typical workloads touch only a small subset of rows within a refresh period of 64ms, so allocating tracking entries on demand significantly reduces storage. If the application does not access many rows in memory, START does not reserve any LLC capacity. Otherwise, START dynamically uses 1-way, 2-way, or 8-way of the cache set based on demand. START consumes, on average, 9.4% of the LLC capacity to store metadata, which is 5x lower compared to dedicating a counter in LLC for each row in memory. We also propose START-M, a memory-mapped START for large-memory systems. Our designs require only 4KB SRAM for newly added structures and perform within 1% of idealized tracking even at TRH of less than 100.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员