Social media users are not equally susceptible to all misinformation. We call "diverse misinformation" the complex relationships between human biases and demographics represented in misinformation. To investigate how users' biases impact their susceptibility to misinformation and their ability to correct each other, we analyze human classification of computer-generated videos (deepfakes) as a type of diverse misinformation. We chose deepfakes as a case study for three reasons: 1) their classification as misinformation is more objective; 2) we can control the demographics of the personas presented; 3) deepfakes are a real-world concern with associated harms that need to be better understood. Our paper presents a survey (N=2,016) where U.S.-based participants are exposed to videos and asked questions about their attributes, not knowing some might be deepfakes. Our analysis measures the extent to which different users are duped and which perceived demographics of deepfake personas tend to mislead. Importantly, we find that accuracy varies significantly by demographics, and participants are generally better at classifying videos that match them (especially for white participants). We extrapolate from these results to understand the population-level impacts of these biases using an idealized mathematical model of the interplay between diverse misinformation and crowd correction. Our model suggests that a diverse set of contacts might provide "herd correction" where friends can protect each other's blind spots. Altogether, human biases and the attributes of misinformation matter greatly, but having a diverse social group may help reduce susceptibility to misinformation.
翻译:社交媒体使用者并非同样容易受到所有错误信息的影响。 我们称之为“不同错误信息 ”, 人类偏见和人口结构之间的复杂关系。 为了调查用户的偏见如何影响他们对错误信息的影响, 以及他们相互纠正的能力。 为了调查用户的偏见如何影响他们对错误信息的影响, 我们分析计算机生成的视频( 深假) 的人类分类, 作为一种不同的错误信息。 我们选择深假作为案例研究, 原因有三:(1) 他们被归类为错误信息更客观;(2) 我们可以控制所介绍的人的人口构成;(3) 深假是真实世界对相关伤害的关切,需要更好地了解这些伤害。 为了调查( N=2, 016), 以美国为基地的参与者可以接触到视频, 并询问有关其属性的问题。 我们的分析测量了不同用户被误导的程度, 以及人们对深假人人口结构的认知往往被误导。 重要的是, 我们发现准确性因人口结构的不同而差异很大, 参与者通常更擅长对与其相匹配的视频进行分类( 特别是白人参与者 ) 。 我们从这些结果外推论, 我们从这些结果中推断, 了解了对人口- 的真理的真相的每个模型都可能提供一种理想联系。