Data augmentation is a widely used technique in machine learning to improve model performance. However, existing data augmentation techniques in natural language understanding (NLU) may not fully capture the complexity of natural language variations, and they can be challenging to apply to large datasets. This paper proposes the Random Position Noise (RPN) algorithm, a novel data augmentation technique that operates at the word vector level. RPN modifies the word embeddings of the original text by introducing noise based on the existing values of selected word vectors, allowing for more fine-grained modifications and better capturing natural language variations. Unlike traditional data augmentation methods, RPN does not require gradients in the computational graph during virtual sample updates, making it simpler to apply to large datasets. Experimental results demonstrate that RPN consistently outperforms existing data augmentation techniques across various NLU tasks, including sentiment analysis, natural language inference, and paraphrase detection. Moreover, RPN performs well in low-resource settings and is applicable to any model featuring a word embeddings layer. The proposed RPN algorithm is a promising approach for enhancing NLU performance and addressing the challenges associated with traditional data augmentation techniques in large-scale NLU tasks. Our experimental results demonstrated that the RPN algorithm achieved state-of-the-art performance in all seven NLU tasks, thereby highlighting its effectiveness and potential for real-world NLU applications.


翻译:数据增强是机器学习中常用的技术,可以提高模型性能。然而,现有的自然语言理解(NLU)数据增强技术可能无法完全捕捉自然语言的复杂变化,并且难以应用于大型数据集。本文提出了一种新颖的数据增强技术——随机位置噪声(RPN)算法,该算法在词向量级别进行操作。RPN通过在所选单词向量的现有值基础上引入噪声来修改原始文本的词嵌入,从而实现更细粒度的修改,更好地捕捉自然语言变化。与传统的数据增强方法不同,RPN在虚拟样本更新期间不需要计算图中的梯度,从而使其简单应用于大型数据集。实验结果表明,RPN在各种NLU任务中均优于现有的数据增强技术,包括情感分析、自然语言推理和引语检测。此外,RPN在低资源环境下表现出色,并适用于包括词嵌入层的任何模型。所提出的RPN算法是增强NLU性能和解决传统数据增强技术在大规模NLU任务中面临的挑战的一种有前途的方法。我们的实验结果表明,在所有七个NLU任务中,RPN算法均实现了最先进的性能,从而突显了其有效性和进行现实world NLU应用的潜力。

0
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
NeurIPS 2021丨K-Net: 迈向统一的图像分割
专知会员服务
16+阅读 · 2021年11月25日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
3分钟看懂史上最强NLP模型BERT
新智元
23+阅读 · 2019年2月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
3分钟看懂史上最强NLP模型BERT
新智元
23+阅读 · 2019年2月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员