As a simple and robust mobile robot base, differential drive robots that can be modelled as a kinematic unicycle find significant applications in logistics and service robotics in both industrial and domestic settings. Safe robot navigation around obstacles is an essential skill for such unicycle robots to perform diverse useful tasks in complex cluttered environments, especially around people and other robots. In this paper, as a more accurate alternative to the standard circular Lyapunov level sets, we introduce novel conic feedback motion prediction methods for bounding the close-loop motion trajectory of the kinematic unicycle robot model under a standard unicycle motion control approach. We present an application of unicycle feedback motion prediction for safe robot navigation using a reference governor, where the safety of the unicycle motion is continuously monitored based on the predicted robot motion. We investigate the role of motion prediction on robot behaviour in numerical simulations and conclude that accurate feedback motion prediction is key for safe and fast robot navigation.
翻译:作为简单而稳健的移动机器人基地,可以仿照运动性单周期的机动性驱动机器人在工业和国内环境的物流和服务性机器人应用中找到了重要的应用。安全机器人在障碍周围航行是这种单周期机器人在复杂混乱的环境中,特别是在人和其他机器人周围执行各种有益任务的基本技能。在本文中,作为标准的Lyapunov圆环级的更准确替代,我们引入了新型的二次回馈运动预测方法,将运动运动的近距离轨道与运动性单周期机器人模型在标准单周期运动控制方法下捆绑起来。我们展示了使用参考督导器对安全机器人导航的单周期反馈运动预测的应用,在此过程中,根据预测的机器人动作,持续监测单周期运动的安全性。我们在数字模拟中调查机器人行为运动预测的作用,并得出结论,准确的反馈运动预测是安全、快速机器人导航的关键。