The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). Using classical potential theory,the Laplace-Beltrami operator can be pre-/post-conditioned with integral operators whose kernel is translation invariant, resulting in well-conditioned Fredholm integral equations of the second-kind. These equations have the standard Laplace kernel from potential theory, and therefore the equations can be solved rapidly and accurately using a combination of fast multipole methods (FMMs) and high-order quadrature corrections. In this work we detail such a scheme, presenting two alternative integral formulations of the Laplace-Beltrami problem, each of whose solution can be obtained via FMM acceleration. We then present several applications of the solvers, focusing on the computation of what are known as harmonic vector fields, relevant for many applications in electromagnetics. A battery of numerical results are presented for each application, detailing the performance of the solver in various geometries.
翻译:嵌入三个维度的封闭表面的拉普尔-贝特拉米问题在许多物理领域出现,包括分子动态(表层扩散)、电磁矢量场和流体动态(卵质变形),利用古典潜在理论,Laplace-Beltrami操作员可以与内核翻译变异的有机操作员预先/后修整,导致二类的Fredholm集成方程式。这些方程式具有来自潜在理论的标准拉普内核,因此方程式可以快速、准确地使用快速多极方法(FMMs)和高阶二次曲线校正的组合来解决。在这项工作中,我们详细介绍了这种方案,提出了Laplace-Beltrami问题的两种替代整体配方,每种配方的溶液都可以通过FMM加速获得。我们然后介绍了溶解器的若干应用,重点是对电磁电磁中许多应用的已知调控场进行计算。每个应用中都会有一个数字结果的电池,详细介绍了各种地貌的溶剂的性能。