We introduce DoubleField, a novel representation combining the merits of both surface field and radiance field for high-fidelity human rendering. Within DoubleField, the surface field and radiance field are associated together by a shared feature embedding and a surface-guided sampling strategy. In this way, DoubleField has a continuous but disentangled learning space for geometry and appearance modeling, which supports fast training, inference, and finetuning. To achieve high-fidelity free-viewpoint rendering, DoubleField is further augmented to leverage ultra-high-resolution inputs, where a view-to-view transformer and a transfer learning scheme are introduced for more efficient learning and finetuning from sparse-view inputs at original resolutions. The efficacy of DoubleField is validated by the quantitative evaluations on several datasets and the qualitative results in a real-world sparse multi-view system, showing its superior capability for photo-realistic free-viewpoint human rendering. For code and demo video, please refer to our project page: http://www.liuyebin.com/dbfield/dbfield.html.


翻译:我们引入了双外观, 将地表字段和光亮字段的优点结合起来, 用于高不洁的人类造型。 在双外观中, 地表字段和光亮字段通过一个共同的嵌入功能和表面制导取样战略联系在一起。 这样, 双外观有一个连续但分解的几何和外观建模学习空间, 支持快速培训、 推断和微调。 为了实现高不洁的自由视野翻版, 双外观被进一步扩展, 以利用超高分辨率输入, 引入观视变异器和传输学习计划, 以便更有效地学习和微调原始分辨率的稀有图像输入。 双外观的效力通过对数个数据集的定量评估和真实世界稀疏多视图系统中的质量结果得到验证, 显示其光学自由视点人类造型的超强能力。 关于代码和演示视频, 请参见我们的项目网页: http://www.liuyebin.com/dbfield/dbfield.html。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
74+阅读 · 2021年5月28日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
CVPR2019年热门论文及开源代码分享
深度学习与NLP
7+阅读 · 2019年6月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
CVPR2019年热门论文及开源代码分享
深度学习与NLP
7+阅读 · 2019年6月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员