Principal component analysis (PCA) is one of the most popular dimension reduction techniques in statistics and is especially powerful when a multivariate distribution is concentrated near a lower-dimensional subspace. Multivariate extreme value distributions have turned out to provide challenges for the application of PCA since their constraint support impedes the detection of lower-dimensional structures and heavy-tails can imply that second moments do not exist, thereby preventing the application of classical variance-based techniques for PCA. We adapt PCA to max-stable distributions using a regression setting and employ max-linear maps to project the random vector to a lower-dimensional space while preserving max-stability. We also provide a characterization of those distributions which allow for a perfect reconstruction from the lower-dimensional representation. Finally, we demonstrate how an optimal projection matrix can be consistently estimated and show viability in practice with a simulation study and application to a benchmark dataset.
翻译:暂无翻译