This article presents a model for traffic incident prediction. Specifically, we address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents. Based on relevant risk factors for traffic accidents and corresponding data categories, we evaluate different options for preprocessing sparse data and different Machine Learning models. Furthermore, we present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles as well as weather, traffic and road data, respectively. After model evaluation and optimisation, we found that a Random Forest model trained on artificially balanced (under-sampled) data provided the highest classification accuracy of 85% on the original imbalanced data. Finally, we present our conclusions and discuss further work; from gathering more data over a longer period of time to build stronger classification systems, to addition of internal factors such as the driver's visual and cognitive attention.


翻译:本文为交通事故预测提供了一个模型。 具体地说, 我们通过培训关于紧急制动事件而不是事故的模型,解决道路交通事故预测中数据稀缺的基本问题。 根据交通事故的相关风险因素和相应的数据类别,我们评估了预处理稀缺数据和不同机器学习模型的不同选项。 此外, 我们提出了一个德国交通事故预测模型的原型,该模型分别基于奔驰汽车的紧急制动数据以及天气、交通和道路数据。 在模型评估和优化之后,我们发现,经过人工平衡(抽样不足)数据培训的随机森林模型为原始不平衡数据提供了85%的最高分类精确度。 最后,我们提出我们的结论并讨论进一步的工作;从在更长的时期内收集更多数据到建立更强大的分类系统,再加一些内部因素,例如驾驶员的视觉和认知关注。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
52+阅读 · 2020年9月7日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年3月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年7月18日
Arxiv
35+阅读 · 2021年1月27日
Learning Discriminative Model Prediction for Tracking
Arxiv
3+阅读 · 2018年3月2日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年3月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员