Wind speed prediction and forecasting is important for various business and management sectors. In this paper, we introduce new models for wind speed prediction based on graph convolutional networks (GCNs). Given hourly data of several weather variables acquired from multiple weather stations, wind speed values are predicted for multiple time steps ahead. In particular, the weather stations are treated as nodes of a graph whose associated adjacency matrix is learnable. In this way, the network learns the graph spatial structure and determines the strength of relations between the weather stations based on the historical weather data. We add a self-loop connection to the learnt adjacency matrix and normalize the adjacency matrix. We examine two scenarios with the self-loop connection setting (two separate models). In the first scenario, the self-loop connection is imposed as a constant additive. In the second scenario a learnable parameter is included to enable the network to decide about the self-loop connection strength. Furthermore, we incorporate data from multiple time steps with temporal convolution, which together with spatial graph convolution constitutes spatio-temporal graph convolution. We perform experiments on real datasets collected from weather stations located in cities in Denmark and the Netherlands. The numerical experiments show that our proposed models outperform previously developed baseline models on the referenced datasets. We provide additional insights by visualizing learnt adjacency matrices from each layer of our models.


翻译:风速预测和预测对于各商业和管理部门都很重要。 在本文中, 我们引入基于图形相联网络( GCNs) 的风速预测新模型。 根据从多个气象站获得的若干气象变数的小时数据, 风速值将在未来的多个步骤中预测。 特别是, 气象站被视为一个图表的节点, 其相关相邻矩阵是可以学习的。 这样, 网络学习图形空间结构, 并根据历史天气数据决定天气台站之间关系的强度 。 我们在所学的相近矩阵中添加一个自循环连接的自循环连接新模型, 并实现对相邻矩阵的正常化 。 我们用自循环连接设置的两种假设( 两个不同的模型 ) 来审查两种情景 。 在第一个假设中, 自循环连接被强制为一个常态添加 。 在第二个假设中, 一个可学习的参数被包括在网络中, 以便决定自循环连接的强度 。 此外, 我们把来自多个时间步骤的数据与时间变数的数据整合在一起, 与空间图形相对等相连接的图变。 我们用自环连接的矩阵模型进行实验, 。 我们用真实数据模型进行实验, 由荷兰先前的直观模型所收集的每个数字直观模型, 展示了荷兰的模型, 提供了新的直观模型 。

1
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
92+阅读 · 2020年1月10日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员