Instrumental variable method is among the most commonly used causal inference approaches for analyzing observational studies with unmeasured confounders. Despite its popularity, the instruments' invalidity is a major concern for practical applications and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. In this paper, we construct uniformly valid confidence intervals for the causal effect when the instruments are possibly invalid. We illustrate the post-selection problem of existing inference methods relying on instrument selection. Our proposal is to search for the value of the treatment effect such that a sufficient amount of candidate instruments are taken as valid. We further devise a novel sampling method, which, together with searching, lead to a more precise confidence interval. Our proposed searching and sampling confidence intervals are shown to be uniformly valid under the finite-sample majority and plurality rules. We compare our proposed methods with existing inference methods over a large set of simulation studies and apply them to study the effect of the triglyceride level on the glucose level over a mouse data set.
翻译:仪器可变方法是用来分析与未测量的混淆者进行的观测研究的最常用的因果推断方法之一。尽管其受欢迎程度很高,但仪器的无效性是实际应用中的一个主要问题,而迅速增长的研究领域则是对可能无效的仪器的因果关系的推断。在本文件中,我们为可能无效的仪器的因果影响制定了统一有效的信任间隔。我们举例说明了现有根据仪器选择的推断方法的选后问题。我们的建议是寻找处理效果的价值,以便将足够数量的候选仪器视为有效。我们进一步设计了一种新型的取样方法,与搜索一起,导致更精确的置信间隔。我们提议的搜索和取样信任间隔在有限抽样多数和多元规则下是统一的。我们将我们所提议的方法与现有的大量模拟研究的推断方法进行比较,并运用这些方法研究老鼠数据集的三重晶化水平对葡萄水平的影响。