Continuous Integration and Continuous Delivery (CI/CD) is a well-established practice that automatically builds, tests, packages, and deploys software systems. To adopt CI/CD, software developers need to configure their projects using dedicated YML configuration files. Mobile applications have distinct characteristics when it comes to CI/CD practices, such as testing on various emulators and deploying to app stores. However, little is known about the challenges and added value of adopting CI/CD in mobile applications and how developers maintain such a practice. In this paper, we conduct an empirical study on CI/CD practices in 2,564 Android apps adopting four popular CI/CD services, namely GitHub Actions, Travis CI, CircleCI, and GitLab CI/CD. We observe a lack of commonality and standards across projects and services, leading to complex YML configurations and associated maintenance efforts. We also observe that CI/CD configurations focus primarily on the build setup, with around half of the projects performing standard testing and only 9% incorporating deployment. In addition, we find that CI/CD configurations are changed bi-monthly on average, with frequent maintenance correlating with active issue tracking, project size/age, and community engagement. Our qualitative analysis of commits uncovered 11 themes in CI/CD maintenance activities, with over a third of the changes focusing on improving workflows and fixing build issues, while another third involves updating the build environment, tools, and dependencies. Our study emphasizes the necessity for automation and AI-powered tools to improve CI/CD processes for mobile applications, and advocates for creating adaptable open-source tools to efficiently manage resources, especially in testing and deployment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员