Machine learning is revolutionizing image-based diagnostics in pathology and radiology. ML models have shown promising results in research settings, but their lack of interoperability has been a major barrier for clinical integration and evaluation. The DICOM a standard specifies Information Object Definitions and Services for the representation and communication of digital images and related information, including image-derived annotations and analysis results. However, the complexity of the standard represents an obstacle for its adoption in the ML community and creates a need for software libraries and tools that simplify working with data sets in DICOM format. Here we present the highdicom library, which provides a high-level application programming interface for the Python programming language that abstracts low-level details of the standard and enables encoding and decoding of image-derived information in DICOM format in a few lines of Python code. The highdicom library ties into the extensive Python ecosystem for image processing and machine learning. Simultaneously, by simplifying creation and parsing of DICOM-compliant files, highdicom achieves interoperability with the medical imaging systems that hold the data used to train and run ML models, and ultimately communicate and store model outputs for clinical use. We demonstrate through experiments with slide microscopy and computed tomography imaging, that, by bridging these two ecosystems, highdicom enables developers to train and evaluate state-of-the-art ML models in pathology and radiology while remaining compliant with the DICOM standard and interoperable with clinical systems at all stages. To promote standardization of ML research and streamline the ML model development and deployment process, we made the library available free and open-source.


翻译:机器学习正在使病理学和放射学方面的基于图像的诊断发生革命性的变化。ML模型在研究环境中显示出令人乐观的结果,但缺乏互操作性是临床整合和评价的一个主要障碍。DICOM标准为数字图像和相关信息的表达和通信提供了信息对象定义和服务,包括图像衍生说明和分析结果。然而,该标准的复杂性阻碍了在ML社区采用该标准,并导致需要软件库和工具简化与DICOM格式数据集的工作。这里我们介绍高二COM图书馆,该图书馆为Python编程语言提供了一个高层次的临床编程界面,其中摘述了标准的低层次细节,便于在Python代码的几行中对DICOM格式的图像信息进行编码和代码化与通信。高二图书馆与广泛的PythonM生态系统用于图像处理和机器学习的宽广的Mython生态系统联系。同时,简化了DICOM合规文件的创建和分类,高二科之间实现了与医疗成像系统的互操作性,该系统将数据用于培训和运行Mython编程的低级编程程序,最终通过ML模型和存储和存储这些模型,我们用来进行磁化和升级的模型,并演示了这些系统,我们通过这些模型和升级的模型,从而演示和升级了这些系统,从而演示了这些系统,从而演示了这些系统,从而演示了ML的模型和存储和存储和存储和存储和存储和储存。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
资源 | Python 中文书籍大集合
AI研习社
13+阅读 · 2018年12月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
35+阅读 · 2021年8月2日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
资源 | Python 中文书籍大集合
AI研习社
13+阅读 · 2018年12月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年8月16日
Arxiv
35+阅读 · 2021年8月2日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Top
微信扫码咨询专知VIP会员