A classic 1993 paper by Alth\H{o}fer et al. proved a tight reduction from spanners, emulators, and distance oracles to the extremal function $\gamma$ of high-girth graphs. This paper initiated a large body of work in network design, in which problems are attacked by reduction to $\gamma$ or the analogous extremal function for other girth concepts. In this paper, we introduce and study a new girth concept that we call the bridge girth of path systems, and we show that it can be used to significantly expand and improve this web of connections between girth problems and network design. We prove two kinds of results: 1) We write the maximum possible size of an $n$-node, $p$-path system with bridge girth $>k$ as $\beta(n, p, k)$, and we write a certain variant for "ordered" path systems as $\beta^*(n, p, k)$. We identify several arguments in the literature that implicitly show upper or lower bounds on $\beta, \beta^*$, and we provide some polynomially improvements to these bounds. In particular, we construct a tight lower bound for $\beta(n, p, 2)$, and we polynomially improve the upper bounds for $\beta(n, p, 4)$ and $\beta^*(n, p, \infty)$. 2) We show that many state-of-the-art results in network design can be recovered or improved via black-box reductions to $\beta$ or $\beta^*$. Examples include bounds for distance/reachability preservers, exact hopsets, shortcut sets, the flow-cut gaps for directed multicut and sparsest cut, an integrality gap for directed Steiner forest. We believe that the concept of bridge girth can lead to a stronger and more organized map of the research area. Towards this, we leave many open problems, related to both bridge girth reductions and extremal bounds on the size of path systems with high bridge girth.


翻译:由 Alth\ H{ o} falfer 等人撰写的经典1993 年的论文证明, 由光栅、 模拟器、 距离或触角到 Exterremal 函数的大幅减缩 $\ gamma$ 高重度图形。 本文在网络设计中引发了一大堆工作, 其中问题通过降为 $\ gamma$ 或其它 girth 概念的类似 extremal 函数而受到攻击 。 在本文中, 我们引入并研究一个新的 girth 概念, 即我们称之为路径系统的桥梁 girt girth, 模拟器, 显示它可以大幅扩大和改进 greadral 和网络设计结果之间的连接网际 。 我们证明两种结果:(1) 我们写出最大可能的 $nnonode, $proad- preadmals ladeal developments $rations $ nice, pentibetrodude, preal- betrode, ex a we dedeal- we mission, ex ex exbs, ex a we detats, exbs be a extrodustrate.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
124+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年8月5日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员