Recent studies have highlighted that deep neural networks (DNNs) are vulnerable to adversarial attacks, even in a black-box scenario. However, most of the existing black-box attack algorithms need to make a huge amount of queries to perform attacks, which is not practical in the real world. We note one of the main reasons for the massive queries is that the adversarial example is required to be visually similar to the original image, but in many cases, how adversarial examples look like does not matter much. It inspires us to introduce a new attack called \emph{input-free} attack, under which an adversary can choose an arbitrary image to start with and is allowed to add perceptible perturbations on it. Following this approach, we propose two techniques to significantly reduce the query complexity. First, we initialize an adversarial example with a gray color image on which every pixel has roughly the same importance for the target model. Then we shrink the dimension of the attack space by perturbing a small region and tiling it to cover the input image. To make our algorithm more effective, we stabilize a projected gradient ascent algorithm with momentum, and also propose a heuristic approach for region size selection. Through extensive experiments, we show that with only 1,701 queries on average, we can perturb a gray image to any target class of ImageNet with a 100\% success rate on InceptionV3. Besides, our algorithm has successfully defeated two real-world systems, the Clarifai food detection API and the Baidu Animal Identification API.


翻译:最近的研究表明,深层神经网络(DNNS)即使在黑盒情景下也很容易受到对抗性攻击。然而,大多数现有的黑盒攻击算法需要大量查询才能进行攻击,这在现实世界中是不切实际的。我们注意到,大规模查询的主要原因之一是,敌对性实例需要与原始图像相近,但在许多情况下,对抗性实例看起来并不重要。它激励我们引入了名为\emph{input-fret}攻击的新攻击,在这种攻击下,一个对手可以选择一个可以启动的任意图像,并允许增加可以察觉到的扰动。按照这种方法,我们建议了两种技术来大幅降低查询的复杂性。首先,我们开始了一个带有灰色图像的对抗性例子,每个像素的图像对目标模型都具有同样的重要性。然后,我们缩小了攻击空间的维度,通过一个小区域来破坏一个小区域,用钢筋来覆盖输入图像。为了提高我们的算法的有效性,我们要将一个预测的梯度稳定成灰色的图像,然后用一个平均速度来显示一个区域。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员