Rapid advances in large language models and agentic AI are driving the emergence of the Internet of Agents (IoA), a paradigm where billions of autonomous software and embodied agents interact, coordinate, and collaborate to accomplish complex tasks. A key prerequisite for such large-scale collaboration is agent capability discovery, where agents identify, advertise, and match one another's capabilities under dynamic tasks. Agent's capability in IoA is inherently heterogeneous and context-dependent, raising challenges in capability representation, scalable discovery, and long-term performance. To address these issues, this paper introduces a novel two-stage capability discovery framework. The first stage, autonomous capability announcement, allows agents to credibly publish machine-interpretable descriptions of their abilities. The second stage, task-driven capability discovery, enables context-aware search, ranking, and composition to locate and assemble suitable agents for specific tasks. Building on this framework, we propose a novel scheme that integrates semantic capability modeling, scalable and updatable indexing, and memory-enhanced continual discovery. Simulation results demonstrate that our approach enhances discovery performance and scalability. Finally, we outline a research roadmap and highlight open problems and promising directions for future IoA.


翻译:大语言模型与智能体人工智能的快速发展正推动智能体互联网(IoA)范式的兴起,该范式下数十亿个自主软件智能体与具身智能体通过交互、协调与协作完成复杂任务。实现如此大规模协作的关键前提是智能体能力发现,即智能体在动态任务环境下识别、发布并匹配彼此的能力。IoA中智能体的能力本质上是异构且依赖于上下文的,这为能力表示、可扩展发现与长期性能带来了挑战。为解决这些问题,本文提出了一种新颖的两阶段能力发现框架。第一阶段为自主能力发布,允许智能体可信地发布其能力的机器可解释描述。第二阶段为任务驱动能力发现,支持基于上下文的搜索、排序与组合,以定位并组装适用于特定任务的智能体。基于此框架,我们提出了一种集成语义能力建模、可扩展可更新索引以及记忆增强持续发现的新方案。仿真结果表明,我们的方法提升了发现性能与可扩展性。最后,我们勾勒了研究路线图,并指出了未来IoA领域面临的开放性问题与有前景的研究方向。

0
下载
关闭预览

相关内容

智能体,顾名思义,就是具有智能的实体,英文名是Agent。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员