Political stance detection has become an important task due to the increasingly polarized political ideologies. Most existing works focus on identifying perspectives in news articles or social media posts, while social entities, such as individuals and organizations, produce these texts and actually take stances. In this paper, we propose the novel task of entity stance prediction, which aims to predict entities' stances given their social and political context. Specifically, we retrieve facts from Wikipedia about social entities regarding contemporary U.S. politics. We then annotate social entities' stances towards political ideologies with the help of domain experts. After defining the task of entity stance prediction, we propose a graph-based solution, which constructs a heterogeneous information network from collected facts and adopts gated relational graph convolutional networks for representation learning. Our model is then trained with a combination of supervised, self-supervised and unsupervised loss functions, which are motivated by multiple social and political phenomenons. We conduct extensive experiments to compare our method with existing text and graph analysis baselines. Our model achieves highest stance detection accuracy and yields inspiring insights regarding social entity stances. We further conduct ablation study and parameter analysis to study the mechanism and effectiveness of our proposed approach.


翻译:由于政治意识形态日益两极化,政治立场的发现已成为一项重要任务。大多数现有工作的重点是查明新闻文章或社交媒体文章中的观点,而个人和组织等社会实体则制作这些文本,并实际采取立场。在本文件中,我们提出实体立场预测的新任务,其目的是预测各实体的社会和政治背景,预测其立场;具体地说,我们从维基百科检索有关当代美国政治的社会实体的事实。然后,我们在域专家的帮助下,对社会实体对政治意识形态的立场进行批注。在界定实体立场预测的任务之后,我们提出了一个基于图表的解决办法,从收集的事实中建立不同的信息网络,并采用封闭式关系图共变网络进行代表性学习。然后,我们用监督、自我监督和不受监督的损失功能进行训练,这些功能受多种社会和政治现象的驱动。我们进行广泛的实验,将我们的方法与现有的文本和图表分析基线进行比较。我们的模式在确定实体立场预测后,取得了最高准确性,并得出关于社会实体立场的启发性见解。我们进一步进行对比研究和参数分析,以研究拟议办法的机制和有效性。

0
下载
关闭预览

相关内容

专知会员服务
13+阅读 · 2021年10月6日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
61+阅读 · 2020年7月30日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
专知会员服务
13+阅读 · 2021年10月6日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
61+阅读 · 2020年7月30日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员