Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach's data efficiency.
翻译:政治观点探测已成为一项日益重要的任务,有助于打击回声室和政治两极分化。以往的做法通常侧重于利用文本内容来识别立场,而没有背景知识,也没有利用新闻文章中丰富的语义和合成文字标签。鉴于这些局限性,我们提议KCD,这是一个政治观点探测方法,可以让多呼多呼知识推理,并将文字提示作为段落级标签。具体地说,我们首先在外部知识图上随机生成散行,并用新闻文字表述来将其注入。然后我们建立一个多样化的信息网络,共同模拟新闻内容以及新闻文章中的语义、合成和实体提示。最后,我们采用了关联图形型图像神经网络,用于图层代表性学习,并进行政治视角探测。广泛的实验表明,我们的方法在两个基准数据集上超越了最先进的方法。我们进一步研究了知识流和文字提示的效果,以及它们如何促进我们的方法的数据效率。