Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.
翻译:语义作用标签(SRL)是国家语言平台社区中一项根本性但具有挑战性的任务。 斯洛伐克语言平台最近的工作主要分为两行:1) BIO基础;2BBBB基础;2BB基础。 尽管其存在普遍性,但它们在不考虑内部争论结构方面有着一些内在的缺陷,有可能阻碍模型的表达性。 关键的挑战在于争论是平坦的结构,而且对于其中的词句没有确定的亚树级认识。 为了纠正这一点,我们在本文件中提议将平板参数视为潜伏的子树枝,从而将SRL降低为树谱分割任务。 特别是,我们将我们的配制配制配制配制配制一种新型的、受限制的树冠状树CRF, 使树结构具有跨度, 并将它进一步扩展至二级情况。 我们在CONLL05和CNLLL12基准上进行了广泛的实验。 结果显示,我们的方法比以前所有的语法- 名作作品都好好好, 在终端和W/金额上都实现了新的艺术状态。