Autonomous vehicle software is typically structured as a modular pipeline of individual components (e.g., perception, prediction, and planning) to help separate concerns into interpretable sub-tasks. Even when end-to-end training is possible, each module has its own set of objectives used for safety assurance, sample efficiency, regularization, or interpretability. However, intermediate objectives do not always align with overall system performance. For example, optimizing the likelihood of a trajectory prediction module might focus more on easy-to-predict agents than safety-critical or rare behaviors (e.g., jaywalking). In this paper, we present control-aware prediction objectives (CAPOs), to evaluate the downstream effect of predictions on control without requiring the planner be differentiable. We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories. Experimentally, we show our objectives improve overall system performance in suburban driving scenarios using the CARLA simulator.
翻译:自动车辆软件的结构通常是由单个部件组成的模块化管道(例如,感知、预测和规划),以帮助将关注事项分离成可解释的子任务。即使有可能进行端对端培训,每个模块都有自己一套用于安全保障、抽样效率、规范化或可解释性的目标。不过,中间目标并不总是与整个系统性能相一致。例如,轨道预测模块的最佳可能性可能比安全临界或罕见行为(例如,Jaywalking)更侧重于容易预测的物剂。在本文件中,我们提出了控制意识预测目标(CAPOs),以评价预测对控制的下游影响,而不需要规划者作出不同的规定。我们提出了两种重要因素,以衡量预测的可能性:一种是使用代理人之间的注意模型,另一种是在将预测的轨迹换成地面真相轨迹时基于控制变化。实验,我们展示了我们的目标,利用CARLA模拟器在亚次城市驾驶情景下改进了总体系统性能。