We identify potential merits of faster-than-Nyquist (FTN) signaling in the finite blocklength (FBL) regime. A unique aspect of FTN signaling is that it can increase the blocklength by packing more data symbols within the same time and frequency to yield strictly higher number of independent signaling dimensions than that of Nyquist rate signaling. Using the finite-blocklength information theory, we provide tight bounds on the maximum channel coding rate (MCCR) of FTN signaling for any finite time-bandwidth product. The merits are categorized into two operating regions of FTN, i.e., when the time-acceleration factor of FTN, $\tau$, is above or below a certain threshold $\tau_{0}$. When $\tau > \tau_{0}$, FTN has both higher channel capacity and MCCR than that of Nyquist rate signaling, when the utilized pulse shape is non-sinc. Since the issues associated with the ideal sinc pulse only get exacerbated when packets are short, the benefit of FTN becomes more significant in the FBL regime. On the other hand, when $\tau < \tau_{0}$, the channel capacity is fixed but MCCR of FTN can continue to increase to a certain degree, thereby reducing the gap between the capacity and MCCR. This benefit is present regardless of the utilized pulse shape, including the ideal sinc-pulse, and is unique to the FBL regime. Instead of increasing MCCR for fixed block error rates, FTN can alternatively lower the block error rates for fixed channel coding rates. These results imply that FTN can lower the penalty from limited channel coding over short blocklength and can improve the performance and reliability of short packet communications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员