We introduce a family of information leakage measures called maximal $(\alpha,\beta)$-leakage, parameterized by non-negative real numbers $\alpha$ and $\beta$. The measure is formalized via an operational definition involving an adversary guessing an unknown (randomized) function of the data given the released data. We obtain a simplified computable expression for the measure and show that it satisfies several basic properties such as monotonicity in $\beta$ for a fixed $\alpha$, non-negativity, data processing inequalities, and additivity over independent releases. We highlight the relevance of this family by showing that it bridges several known leakage measures, including maximal $\alpha$-leakage $(\beta=1)$, maximal leakage $(\alpha=\infty,\beta=1)$, local differential privacy [LDP] $(\alpha=\infty,\beta=\infty)$, and local Renyi differential privacy [LRDP] $(\alpha=\beta)$, thereby giving an operational interpretation to local Renyi differential privacy. We also study a conditional version of maximal $(\alpha,\beta)$-leakage on leveraging which we recover differential privacy and Renyi differential privacy. A new variant of LRDP, which we call maximal Renyi leakage, appears as a special case of maximal $(\alpha,\beta)$-leakage for $\alpha=\infty$ that smoothly tunes between maximal leakage ($\beta=1$) and LDP ($\beta=\infty$). Finally, we show that a vector form of the maximal Renyi leakage relaxes differential privacy under Gaussian and Laplacian mechanisms.
翻译:我们引入了一族泄露信息度量,称为最大$(\alpha,\beta)$-泄露,其由非负实数$\alpha$和$\beta$参数化。该度量通过操作定义形式化,涉及对释放的数据进行猜测的对手,猜测数据的未知(随机化)函数。我们得到了简化的可计算表达式,并表明它满足几个基本性质,例如$\beta$对于固定$\alpha$的单调性,非负性,数据处理不等式以及独立释放的可加性。我们通过显示它也涉及了一些已知的泄漏度量,包括最大$\alpha$-泄漏$(\beta=1)$,最大泄漏$(\alpha=\infty,\beta=1)$,局部差分隐私[LDP]$(\alpha=\infty,\beta=\infty)$和局部Renyi差分隐私[LRDP]$(\alpha=\beta)$,从而为本地Renyi差分隐私提供了操作解释。我们还研究了$(\alpha,\beta)$-最大泄漏的一个条件版本,从而恢复了差分隐私和Renyi差分隐私。一种名为最大Renyi泄漏的新变体出现为最大$(\alpha,\beta)$-泄漏的一种特殊情况,其中$\alpha=\infty$可在最大泄漏($\beta=1$)和LDP ($\beta=\infty$)之间平滑调节。最后,我们表明,最大Renyi泄漏的向量形式在高斯和拉普拉斯机制下放宽了差分隐私。