We introduce the concept of smart radio environments, currently extensively studied for wireless communication in metasurface-programmable meter-scaled environments (e.g., inside rooms), on the chip scale. Wired intra-chip communication for information exchange between cores increasingly becomes a computation-speed-bottleneck for modern multi-core chips. Wireless intra-chip links with millimeter waves are a candidate technology to address this challenge, but they currently face their own problems: the on-chip propagation environment can be highly reverberant due to the metallic chip enclosure but transceiver modules must be kept simple (on/off keying) such that long channel impulse responses (CIRs) slow down the communication rate. Here, we overcome this problem by endowing the on-chip propagation environment with in situ programmability, allowing us to shape the CIR at will, and to impose, for instance, a pulse-like CIR despite the strong multi-path environment. Using full-wave simulations, we design a programmable metasurface suitable for integration in the on-chip environment ("on-chip reconfigurable intelligent surface"), and we demonstrate that the spatial control offered by the metasurface allows us to shape the CIR profile. We envision (i) dynamic multi-channel CIR shaping adapted to on-chip traffic patterns, (ii) analog wave-based over-the-air computing inside the chip enclosure, and (iii) the application of the explored concepts to off-chip communication inside racks, inside the chassis of personal computers, etc.


翻译:我们引入了智能无线电环境的概念,目前,对智能无线电环境进行了广泛研究,以便在元表层可编程的仪表环境(如室内)中,在芯片规模上,对无线通信进行广泛研究,在元表层可编程的仪表环境(如室内)进行无线通信;为核心之间交流信息而安装的电动芯片内部通信日益成为现代多芯片的计算-波棒。与毫米波的无线芯片内部链接是应对这一挑战的候选技术,但目前它们面临自己的问题:由于金属岩层封隔板,在芯片传播环境中(例如内部)必须保持简单(开关键),以便让长频道的脉冲反应反应(CIRs)减缓通信速度速度速度。在这里,我们克服了这个问题,通过在现场编程中安放的芯片传播环境,让我们在多路面环境中形成类似脉冲的芯片。使用全波芯片模拟,我们设计一个适合在机上环境内整合的可编程的元表层(“在上”屏幕上对内移动的电路面结构,让我们的图像进行智能的图像上移动的图像定位,通过C-C-C-C-C-S-C-S-S-S-S-S-S-S-S-S-S-I-S-S-S-S-S-S-S-S-S-S-S-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月26日
VIP会员
相关资讯
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【仿真】虚拟调试 Virtual commissioning
产业智能官
7+阅读 · 2019年5月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员