Query rewriting is a fundamental technique in information retrieval (IR). It typically employs the retrieval result as relevance feedback to refine the query and thereby addresses the vocabulary mismatch between user queries and relevant documents. Traditional pseudo-relevance feedback (PRF) and its vector-based extension (VPRF) improve retrieval performance by leveraging top-retrieved documents as relevance feedback. However, they are constructed based on two major hypotheses: the relevance assumption (top documents are relevant) and the model assumption (rewriting methods need to be designed specifically for particular model architectures). While recent large language models (LLMs)-based generative relevance feedback (GRF) enables model-free query reformulation, it either suffers from severe LLM hallucination or, again, relies on the relevance assumption to guarantee the effectiveness of rewriting quality. To overcome these limitations, we introduce an assumption-relaxed framework: \textit{Generalized Pseudo Relevance Feedback} (GPRF), which performs model-free, natural language rewriting based on retrieved documents, not only eliminating the model assumption but also reducing dependence on the relevance assumption. Specifically, we design a utility-oriented training pipeline with reinforcement learning to ensure robustness against noisy feedback. Extensive experiments across multiple benchmarks and retrievers demonstrate that GPRF consistently outperforms strong baselines, establishing it as an effective and generalizable framework for query rewriting.
翻译:查询重写是信息检索领域的一项基础技术。该技术通常利用检索结果作为相关性反馈来优化查询,从而解决用户查询与相关文档之间的词汇不匹配问题。传统的伪相关反馈及其基于向量的扩展方法通过将顶部检索到的文档作为相关性反馈来提升检索性能。然而,这些方法基于两大假设构建:相关性假设(顶部文档是相关的)和模型假设(重写方法需针对特定模型架构专门设计)。尽管近期基于大语言模型的生成式相关性反馈实现了无需特定模型的查询重构,但其仍存在严重的大语言模型幻觉问题,或再次依赖相关性假设以保证重写质量的有效性。为突破这些局限,我们提出了一种放宽假设的框架——广义伪相关反馈,该框架基于检索到的文档执行无需特定模型的自然语言重写,不仅消除了模型假设,还降低了对相关性假设的依赖。具体而言,我们设计了一种基于强化学习的效用导向训练流程,以确保对噪声反馈的鲁棒性。在多个基准测试和检索器上的大量实验表明,GPRF始终优于现有强基线方法,确立了其作为查询重写有效且可泛化框架的地位。