Identifying "superspreaders" of disease is a pressing concern for society during pandemics such as COVID-19. Superspreaders represent a group of people who have much more social contacts than others. The widespread deployment of WLAN infrastructure enables non-invasive contact tracing via people's ubiquitous mobile devices. This technology offers promise for detecting superspreaders. In this paper, we propose a general framework for WLAN-log-based superspreader detection. In our framework, we first use WLAN logs to construct contact graphs by jointly considering human symmetric and asymmetric interactions. Next, we adopt three vertex centrality measurements over the contact graphs to generate three groups of superspreader candidates. Finally, we leverage SEIR simulation to determine groups of superspreaders among these candidates, who are the most critical individuals for the spread of disease based on the simulation results. We have implemented our framework and evaluate it over a WLAN dataset with 41 million log entries from a large-scale university. Our evaluation shows superspreaders exist on university campuses. They change over the first few weeks of a semester, but stabilize throughout the rest of the term. The data also demonstrate that both symmetric and asymmetric contact tracing can discover superspreaders, but the latter performs better with daily contact graphs. Further, the evaluation shows no consistent differences among three vertex centrality measures for long-term (i.e., weekly) contact graphs, which necessitates the inclusion of SEIR simulation in our framework. We believe our proposed framework and these results may provide timely guidance for public health administrators regarding effective testing, intervention, and vaccination policies.


翻译:在诸如COVID-19等传染病期间,确定疾病“超级传播者”是社会迫切关注的一个问题。超级传播者代表着一组人,他们的社会接触程度比其他人要高得多。 广泛部署WLAN基础设施使得能够通过人们的无处不在的移动装置进行非侵入性接触追踪。 这种技术为检测超传播者提供了希望。 在本文中,我们提出了一个基于WLAN-log的超传播者检测总框架。 在我们的框架中,我们首先使用WLAN日志来建立联系图,共同考虑人类对称和不对称的相互作用。 其次,我们在接触图上采用三种顶点中心中心测量方法,以产生三个超级传播者候选人群体。 最后,我们利用SEIR模拟来确定这些候选人中的超级传播者群体,他们是根据模拟结果发现疾病传播的最关键的个人。 我们实施了我们的框架, 并用一个有4100万个大型大学日志条目的WLLAN数据集来评估。 我们的评估显示大学校园存在超级传播者。 在最初的几周里, 他们会改变我们提出的头几个顶点中心中心中心中心点,, 但要稳定在接下来的SErealbalbalbalbalalalbildal 。

0
下载
关闭预览

相关内容

专知会员服务
57+阅读 · 2021年3月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
24+阅读 · 2020年3月11日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员