The quadrotor is popularly used in challenging environments due to its superior agility and flexibility. In these scenarios, trajectory planning plays a vital role in generating safe motions to avoid obstacles while ensuring flight smoothness. Although many works on quadrotor planning have been proposed, a research gap exists in incorporating self-adaptation into a planning framework to enable a drone to automatically fly slower in denser environments and increase its speed in a safer area. In this paper, we propose an environmental adaptive planner to adjust the flight aggressiveness effectively based on the obstacle distribution and quadrotor state. Firstly, we design an environmental adaptive safety aware method to assign the priority of the surrounding obstacles according to the environmental risk level and instantaneous motion tendency. Then, we apply it into a multi-layered model predictive contouring control (Multi-MPCC) framework to generate adaptive, safe, and dynamical feasible local trajectories. Extensive simulations and real-world experiments verify the efficiency and robustness of our planning framework. Benchmark comparison also shows superior performances of our method with another advanced environmental adaptive planning algorithm. Moreover, we release our planning framework as open-source ros-packages.
翻译:磁场因其高度灵活和灵活性,在具有挑战性的环境中被广泛使用。在这些情景中,轨迹规划在创造安全动作以避免障碍、同时确保飞行顺利性方面发挥着关键作用。虽然提出了许多关于二次钻场规划的工作,但在将自我适应纳入规划框架方面存在着研究差距,使无人驾驶飞机能够在较稠密的环境中自动飞行速度较慢,并在更安全的地区提高速度。在本文件中,我们提议建立一个环境适应性规划员,根据障碍分布和二次钻场状态,有效地调整飞行攻击性。首先,我们设计一种环境适应性安全意识方法,根据环境风险水平和瞬间运动趋势,确定周围障碍的优先位置。然后,我们将其应用到多层次模型预测调整控制(Multi-MPCC)框架,以产生适应性、安全性和动态可行的本地轨迹。我们的广泛模拟和现实世界实验将核查我们规划框架的效率和稳健性。基准比较还显示我们的方法的优性表现和另一个先进的高级环境适应性规划算法。此外,我们将规划框架作为开放的软件包件。