Previous work showed that reCAPTCHA v2's image challenges could be solved by automated programs armed with Deep Neural Network (DNN) image classifiers and vision APIs provided by off-the-shelf image recognition services. In response to emerging threats, Google has made significant updates to its image reCAPTCHA v2 challenges that can render the prior approaches ineffective to a great extent. In this paper, we investigate the robustness of the latest version of reCAPTCHA v2 against advanced object detection based solvers. We propose a fully automated object detection based system that breaks the most advanced challenges of reCAPTCHA v2 with an online success rate of 83.25%, the highest success rate to date, and it takes only 19.93 seconds (including network delays) on average to crack a challenge. We also study the updated security features of reCAPTCHA v2, such as anti-recognition mechanisms, improved anti-bot detection techniques, and adjustable security preferences. Our extensive experiments show that while these security features can provide some resistance against automated attacks, adversaries can still bypass most of them. Our experimental findings indicate that the recent advances in object detection technologies pose a severe threat to the security of image captcha designs relying on simple object detection as their underlying AI problem.
翻译:先前的工作显示, RECAPTCHA v2 的图像挑战可以通过由深神经网络图像分类和视觉图像识别服务提供现成图像识别服务提供的自动程序来应对。 为了应对新出现的威胁, Google对其图像进行了重大更新, reCAPTCHA v2 挑战使得先前方法在很大程度上无效。 在本文件中, 我们调查了RECAPTCHA v2 最新版本的强力性, 对抗高级天体探测解决方案。 我们提出一个完全自动化的物体探测系统, 该系统打破了RECAPTCHA v2 的最先进挑战, 其在线成功率达到83.25%, 这是迄今为止的最高成功率, 平均只需要19.93秒( 包括网络延迟) 才能克服挑战。 我们还研究了RECAPTCHA v2 的最新安全特征, 如反承认机制, 改进反机器人检测技术和可调整的安全偏好。 我们的广泛实验显示, 虽然这些安全特征可以提供一些抵抗自动攻击的抵抗力, 但对手仍然可以绕过大多数。 我们的实验发现, 最近在目标探测技术上的进展对安全图像的彻底威胁。