This report describes the speaker diarization system developed by the ABSP Laboratory team for the third DIHARD speech diarization challenge. Our primary contribution is to develop acoustic domain identification (ADI) system for speaker diarization. We investigate speaker embeddings based ADI system. We apply a domain-dependent threshold for agglomerative hierarchical clustering. Besides, we optimize the parameters for PCA-based dimensionality reduction in a domain-dependent way. Our method of integrating domain-based processing schemes in the baseline system of the challenge achieved a relative improvement of $9.63\%$ and $10.64\%$ in DER for core and full conditions, respectively, for Track 1 of the DIHARD III evaluation set.
翻译:本报告介绍了ABSP实验室小组为第三次DIHARD语言分化挑战开发的发言者二分化系统,我们的主要贡献是开发语音域识别系统(ADI),我们调查以语音域识别系统为基础的发言者二分化系统,我们为聚合性等级组合采用一个以域为主的门槛,此外,我们以以以以域为主的方式优化以五氯苯甲醚为基础的维度减少参数,我们将基于域的处理方案纳入挑战基线系统的方法,在DHARD III 系列评价第1轨中,核心条件和全部条件分别相对改进了9.63美元和10.64美元。