AI, machine learning, and data science methods are already pervasive in our society and technology, affecting all of our lives in many subtle ways. Trustworthy AI has become an important topic because trust in AI systems and their creators has been lost, or was never present in the first place. Researchers, corporations, and governments have long and painful histories of excluding marginalized groups from technology development, deployment, and oversight. As a direct result of this exclusion, these technologies have long histories of being less useful or even harmful to minoritized groups. This infuriating history illustrates that industry cannot be trusted to self-regulate and why trust in commercial AI systems and development has been lost. We argue that any AI development, deployment, and monitoring framework that aspires to trust must incorporate both feminist, non-exploitative participatory design principles and strong, outside, and continual monitoring and testing. We additionally explain the importance of considering aspects of trustworthiness beyond just transparency, fairness, and accountability, specifically, to consider justice and shifting power to the people and disempowered as core values to any trustworthy AI system. Creating trustworthy AI starts by funding, supporting, and empowering groups like Queer in AI so the field of AI has the diversity and inclusion to credibly and effectively develop trustworthy AI. Through our years of work and advocacy, we have developed expert knowledge around questions of if and how gender, sexuality, and other aspects of identity should be used in AI systems and how harms along these lines should be mitigated. Based on this, we discuss a gendered approach to AI, and further propose a queer epistemology and analyze the benefits it can bring to AI.


翻译:我们的社会和技术中已经广泛存在,我们的社会和技术中已经广泛存在了机器学习和数据科学方法,以许多微妙的方式影响到我们的所有生活。 值得信赖的AI已经成为一个重要话题,因为对AI系统及其创建者的信任已经丧失,或者根本不存在。 研究人员、公司和政府有着将边缘化群体排除在技术开发、部署和监督之外的长期和痛苦的历史。由于这种排斥的直接后果,这些技术长期以来一直没有那么有用,甚至有害于被贬低的群体。这种令人毛骨悚然的历史表明,工业不能被信任于自我调节,为什么对商业AI系统和发展的信任已经丧失。 我们争论说,任何希望信任的AI系统开发、部署和监测框架必须既包括女权主义、非剥削性的参与性设计原则,也包括强有力的外部、持续的监测和测试。 我们还进一步解释了考虑信任度问题的重要性,而不仅仅是透明度、公平和问责,特别是考虑正义和将权力转移给人民,并降低作为任何可信赖的AI系统的核心价值。 我们通过资助、支持和增强信任的AI系统的多样性来建立可靠的AI系统。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员