SARS-COV-2 is a positive single-strand RNA-based macromolecule that has caused the death of more than 6.3 million people since June 2022. Moreover, by disturbing global supply chains through lockdown, the virus has indirectly caused devastating damage to the global economy. It is vital to design and develop drugs for this virus and its various variants. In this paper, we developed an in-silico study-based hybrid framework to repurpose existing therapeutic agents in finding drug-like bioactive molecules that would cure Covid-19. We employed the Lipinski rules on the retrieved molecules from the ChEMBL database and found 133 drug-likeness bioactive molecules against SARS coronavirus 3CL Protease. Based on standard IC50, the dataset was divided into three classes active, inactive, and intermediate. Our comparative analysis demonstrated that the proposed Extra Tree Regressor (ETR) based QSAR model has improved prediction results related to the bioactivity of chemical compounds as compared to Gradient Boosting, XGBoost, Support Vector, Decision Tree, and Random Forest based regressor models. ADMET analysis is carried out to identify thirteen bioactive molecules with ChEMBL IDs 187460, 190743, 222234, 222628, 222735, 222769, 222840, 222893, 225515, 358279, 363535, 365134 and 426898. These molecules are highly suitable drug candidates for SARS-COV-2 3CL Protease. In the next step, the efficacy of bioactive molecules is computed in terms of binding affinity using molecular docking and then shortlisted six bioactive molecules with ChEMBL IDs 187460, 222769, 225515, 358279, 363535, and 365134. These molecules can be suitable drug candidates for SARS-COV-2. It is anticipated that the pharmacologist/drug manufacturer would further investigate these six molecules to find suitable drug candidates for SARS-COV-2. They can adopt these promising compounds for their downstream drug development stages.


翻译:SARS-COV-2是一个积极的单一分子和 RNA 基为 3,288 的分子流体,自2022年6月以来导致超过630万人死亡。此外,通过封锁干扰全球供应链,病毒间接地对全球经济造成了毁灭性损害。为这种病毒及其各种变体设计和开发药物至关重要。在本文中,我们开发了一个基于硅的研究混合框架,以重新利用现有的治疗剂寻找药物类生物活性分子来治愈Covid-19。我们利用了从CHEMBL数据库提取的分子的利宾斯基规则,发现了133个针对SARS corona病毒 3CLPertapeace的类似药物分子分子。根据IC50标准,该数据集被分成三个活跃、不活跃和中间的类别。我们进行比较分析表明,基于QSAR的超树变异性(ETR)模型可以进一步发现这些化学化合物的生物动态发展结果,而与Gradent BOut, XGBOE,支持VED-S-Reforal 358,使用22 IMF Restal Rex 22 DNA模型进行亚化分析。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员