Dynamic prediction of locomotor capacity after stroke is crucial for tailoring rehabilitation, yet current assessments provide only static impairment scores and do not indicate whether patients can safely perform specific tasks such as slope walking or stair climbing. Here, we develop a data-physics hybrid generative framework that reconstructs an individual stroke survivor's neuromuscular control from a single 20 m level-ground walking trial and predicts task-conditioned locomotion across rehabilitation scenarios. The system combines wearable-sensor kinematics, a proportional-derivative physics controller, a population Healthy Motion Atlas, and goal-conditioned deep reinforcement learning with behaviour cloning and generative adversarial imitation learning to generate physically plausible, patient-specific gait simulations for slopes and stairs. In 11 stroke survivors, the personalized controllers preserved idiosyncratic gait patterns while improving joint-angle and endpoint fidelity by 4.73% and 12.10%, respectively, and reducing training time to 25.56% relative to a physics-only baseline. In a multicentre pilot involving 21 inpatients, clinicians who used our locomotion predictions to guide task selection and difficulty obtained larger gains in Fugl-Meyer lower-extremity scores over 28 days of standard rehabilitation than control clinicians (mean change 6.0 versus 3.7 points). These findings indicate that our generative, task-predictive framework can augment clinical decision-making in post-stroke gait rehabilitation and provide a template for dynamically personalized motor recovery strategies.


翻译:脑卒中后运动能力的动态预测对于个体化康复至关重要,然而现有评估仅提供静态损伤评分,无法指示患者是否能安全执行特定任务(如坡道行走或爬楼梯)。本研究开发了一种数据-物理混合生成框架,该框架通过单次20米平地行走试验重建个体脑卒中幸存者的神经肌肉控制机制,并预测跨康复场景下的任务条件性运动能力。该系统整合了可穿戴传感器运动学数据、比例-微分物理控制器、健康人群运动图谱数据库,以及结合行为克隆与生成对抗模仿学习的目标条件深度强化学习,以生成物理上合理、患者特异性的坡道与楼梯步态模拟。在11名脑卒中幸存者中,个性化控制器在保持个体步态特征的同时,将关节角度与末端轨迹保真度分别提升4.73%和12.10%,并将训练时间缩减至纯物理基准模型的25.56%。在一项涉及21名住院患者的多中心试点研究中,使用本系统运动预测指导任务选择与难度调整的临床医师,在28天标准康复期内使患者Fugl-Meyer下肢评分获得比对照组医师更大的提升(平均变化6.0分对比3.7分)。这些结果表明,我们的生成式任务预测框架能够增强脑卒中后步态康复的临床决策,并为动态个性化运动功能恢复策略提供范式。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员